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SUMMARY 
This paper presents numerical examples for the moving grid finite element algorithm derived in Part 1 to 
solve the non-linear coupled set of PDEs governing immiscible multiphase flow in porous media in one 
dimension. Examples include single- and double-front simulations for two- and three-phase flow regimes 
and incorporating a mass sink. The modelling approach is shown to achieve significant savings in 
computation time and memory allocation when compared with fixed grid solutions of equivalent accuracy. 
This work includes sensitivity analyses for the parameters which are incorporated in the grid adaptation 
method, including the curvature weights, artificial viscosity and artificial repulsive force. It is found that the 
curvature weights are exponential functions of the negative ratio of the square root of the domain length to 
the number of discrete nodes. These weighting parameters are also shown to depend upon the shape of the 
front. On the basis of the examined simulations, it is recommended that artificial viscosity be neglected in the 
solution of the coupled non-linear set of PDEs governing multiphase flow in porous media. Similarly, use of 
a repulsive force is found to be unnecessary in simulations involving the migration of two liquid phases. For 
multiphase flows incorporating a gas phase it is recommended to use a non-zero value for the repulsive force 
to avoid development of an ill-conditioned nodal distribution matrix. An equation to evaluate the repulsive 
force under these circumstances is suggested. 
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1. INTRODUCTION 

The use of adaptive grid methods for the solution of multiphase flow equations in porous media 
has not been fully explored in the literature. This is primarily due to the non-linear and coupled 
nature of such problems. It is apparent, however, that distinct advantages are to be gained by the 
application of such techniques to the resolution of sharp fronts present in many of these problems. 
In Part 1 of this paper a moving grid finite element method (MGFEM) was developed and 
applied to the coupled set of partial differential equations governing immiscible flow and 
incorporating capillarity. The governing equations along with auxiliary relations (repeated here 
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for convenience) are 

as, ap,, +- as, ___ ap,, + s,A,,-) apw, =+, a (-+ ap,, yw cos e )  1, 
4(-- ap,, at ap,, at at ax ax 

4(-- ap,, at +- ap,, __ at + SOBSo w o w  at + P W J  ) =&[ ( a(P,, ax + Pwg) +?,case)], (1b) 
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Ss, - Sr, 
S, = Sr, + 

[ 1 + (a,=h,)"s.] ms. ' 

where B,, = Bw + fi+ and p,, = Po + / I 6 .  The notation is summarized at the end of Part 1 of this 
paper. In the developed model the above equations are solved using a standard linear Galerkin 
finite element discretization in space and a backward difference operator in time. 

The moving grid algorithm is based upon the combination of two equidistribution criteria, one 
in the variable gradient and one in the curvature. To facilitate application of this algorithm, a 
representative gradient (P  ') is selected, based on the largest gradient among the primary variables 
at a given location. The following set of algebraic equations for the nodal positions are formed 
from these criteria: 

XI= X(O), (24 

X-l-J,'=O for i=2,.  . . ,n-l, (2b) 

x, = x(n), (2c) 

where the explicit form of (2b) is 

xi-2{ -B,J[(P:- l -P:_2)2+E21} 

+xi- 1 { - J(P:! 1 + E l )  + ( B ,  -B , )J[ (P:  - Pi- 
+xi { J(P:2_ 1 + E l ) +  J(P:2+E1)+B1J[(P:- 1 - P f - 2 ) 2  + E 2 1  +B,J[(P:+ 1-P:)2  + E J )  

+xi+ 1 { - J(Pl2 +El)+(BZ -B , )J[ (P:-P;-  1)2 + E 2 1 }  
+ Xi+2 { - Bz J [ ( P I +  1 - P:)2 + E 2 1  ) =o. 

+ E Z I }  

(24 
Here P' =(Pi+ - Pi)/(xi+ -xi). Because nodal estimates of pressures are required for the 
solution of (2), these equations must be solved in some iterative manner with the governing 
equations (1). 

A two-phase, single-front displacement was simulated as an example application of the moving 
grid approach in Part 1 and is referred to herein as simulation case 1. For this example the model 
performed quite well, achieving a substantial saving in computer time and storage for a desired 
degree of accuracy. Clearly, however, a much greater range of simulations must be examined to 
demonstrate the utility of the modelling approach. In the following pages a number of model 
simulations are presented for various scenarios which are representative of two- and three-phase 
flow problems incorporating multiple fronts and sources/sinks. There is a distinct absence of 
literature on the application of moving grid methods to these more complex types of flow 
scenarios. 
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Another important issue examined herein is the estimation of moving grid algorithm para- 
meters. These parameters include artificial viscosity and repulsive force coefficients ( E , ,  E , )  and 
curvature weights (B,, B,). Relatively little attention has been directed towards the development 
of guidelines for the selection of these parameters. Constant values for each parameter are often 
used (see e.g. References 14) and these values are frequently determined by a trial-and-error 
procedure. In this work the solution sensitivity to these parameters is explored through numerical 
experimentation, and some tentative parameter selection guidelines are suggested for the solution 
of immiscible phase flow problems. 

Sensitivity analysis 

In order to examine the influence of moving grid parameters on solution efficiency and 
accuracy, it will be useful to revisit the example simulation presented in case 1. Simulation matrix 
and fluid properties and boundary conditions are given in Tables I and 11. Subsequent simu- 
lations, unless otherwise noted, are also based upon these same parameters. Functional forms of 
saturation and relative permeability functions are given in equations (1cHle). A solution for one 
set of moving grid parameters is plotted in Figure 1. The values of the parameters used to obtain 
this solution are E ,  = 0, E ,  =0,  B ,  = 1.2 x These moving grid parameters were 
determined through numerical experimentation and comparison with a fine fixed grid finite 
element method (FGFEM) simulation of high accuracy. 

From these numerical experiments some general observations may be made relating to 
parameter selection. 

and B ,  = 

1. The nodes tend to concentrate at the sharp gradient (front) area as E ,  becomes smaller. As 
the nodal spacing decreases at the front, numerical dispersion also decreases and the front 
becomes steeper. This response to 

2. As B ,  and B, become larger, the nodes tend to concentrate to a greater degree at large- 
curvature areas and to a lesser degree at steep gradient areas. This behaviour can be 
deduced directly from equations (2) since B ,  and B ,  are the weight parameters for the 
curvature criterion in the equidistribution function. To illustrate this behaviour, simulation 
results for different values of B ,  = B,  = B are shown in Figure 2. 

has also been observed by others (e.g. Reference 5). 

3. The nodal spacing at the front becomes larger as the artificial viscosity ( E , )  increases. 
4. The smallest nodal spacing also depends upon two additional factors: the ratio between the 

domain length and the number of discrete nodes (L/n) and the second derivative of the 
function on which the equidistribution function is based, i.e. the ratio amongst the values of 
Pi in (2). The minimum element length contained within the front decreases with an increase 
in the number of discrete nodes/domain length or with an increase in the magnitude of the 
gradient about the front in comparison to the gradients elsewhere in the domain. 

5. For this problem the smallest element length increases with time since the propagation front 
smears with its advancement and the maximum gradient value decreases. 

The values of the moving grid parameters could be determined a priori by substituting desired 
nodal locations into (2) and solving for clr E,,  B ,  and B, in order to obtain a specific nodal 
distribution at the front. In general, this is a rather difficult task since the equidistribution 
function is non-linear. Such a scheme is also impractical for situations in which the front changes 
in shape or additional fronts or sources/sinks are introduced into the domain. On the basis of the 
observations enumerated above, it is alternatively proposed in this work that the values of E~ and 
E,  be computed within the programme as quadratic functions of the largest gradient in the 
domain and that B ,  and B,  be treated as constants. 
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Table I. Soil and fluid parameters used in simulations (after AbriolaI2) 

Characteristic Value Units 

Water-TCE simulation 

S r W  
SSW 

asw 
nSw 

nkw 

Water-TCE gas simulation 

S r W  
SSW 

Sro 
SS.3 
aSW 
nSw 

%m,, liQ"i* 

%*.r Liquid$ 

nw-o system 

nw-g system 

nw-o system 

no-g system 

k w  

kw 

ko 

k, 

980.616 
036 

5.2831 x lo-' 
2.0 x 10- 

1437.28871 

0 
980-465 

0-0 1 
4.531 x lo-" 

5.8 x 10-3 

0.306 
09998 
0.11 
6.50 
0108 
6-60 
0.40 

0.170 
1 .Ooo 
0.170 
1 *Ooo 
0.1043 
4-690 

0.0624 
8.6050 
0.108 
0.8560 
0.8838 
0.6320 
0.62 1 6 

m s - 2  

cm2 
cm2 dyn- 
g cm-2 s-2 
Poise 

gcm-2s-2 

Poise 
cm2 dyne-' 

cm-I 

cm-1 

cm-' 

cm-' 

cm-I 

The following recommendations are made for the evaluation of the moving grid parameters for 
the solution of the PDEs that govern two- and three-phase flow in porous media. For the artificial 
viscosity c2 a value of zero is suggested. Use of the artificial viscosity parameter proved to be 
unnecessary in these simulations since the organic-water front moves relatively slowly and a 
solution of equations (2) is guaranteed with no nodal overlapping if the matrix problem is not 
ill-conditioned. 

no specific recommendation could be made based on the 
two-phase flow problem. Representative gradients varied by only three orders of magnitude over 
the domain for the problem presented in Figure 1. In this problem the initial minimum value of 
the gradient is about 10 dyncm-3 and the minimum gradient increases as the simulation 

For the artificial repulsive force 
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Table 11. Initial and boundary conditions for the problems discussed in this paper 

Po, (dyn cm - 2, Pwg (dyn cm- 2, 

Case I 
Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 
Case 2 

Initial conditions 

Upstream boundary conditions 
Downstream boundary conditions 

Case 3 
Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

Case 4 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

Case 5 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 
Case 6 

Initial conditions 
Upstream boundary conditions 
Downstream boundary conditions 

1000 
5900 
loo00 

Zero at the top 
and hydrostatic water 
pressure distribution 

5100 
44127.7 

Results of case 2 
15000 
44127.7 

Results of case 1 
5900 
1000 

-21135 
- 16830 
-21 135 

Results of case 5 
- 7500 

-21135 

0 
9710 

0 

0 
9510 

0 

Results of case 2 
7729 

0 

Results of case 1 
9710 

0 

15210 
15210 
15210 

Results of case 5 
7500 

15210 

proceeds. This minimum value and the ratio between the maximum and minimum values of the 
gradients guarantee that the set (2) is not ill-conditioned. Thus no artificial repulsive force was 
required in the simulation of this problem. A zero value of was not found to be adequate for 
other problems, however. For example, variations in the representative gradients over five orders 
of magnitude were found for the simulation of wagter-organic-gas flow (cases 5 and 6), with a 
minimum gradient of about zero. Zero values for gradients and curvatures produced an ill- 
conditioned matrix problem for nodal distribution. For this case an optimal was found to vary 
with the square of the maximum gradient in the domain. This variation of c1 is consistent with the 
expression (2d), where summation of E~ and the square of the gradient appear within a square root 
operator. The ratio of the gas and water viscosities was used to scale the gradient in the expression 
for c l .  Recall that the gas pressure gradient (gas convection) is neglected in the governing 
equations. Thus the selection of such a scaling factor is physically based since it represents the gas 
gradient in subdomains where the water and TCE gradients are near zero. The following 
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Figure 1. Simulation results for case 1 after 1000 s: (a) S, ;  (b) P,, 

expression for E ~ ,  then, was found to give satisfactory results in the three-phase simulations 
examined: 

Other expressions for c1 have been ~ugges ted .~-~  These expressions are first-order functions of the 
ratio between gradients or element lengths. 

For the evaluation of B ,  and B,,  numerical experiments revealed that the curvature weight 
must be increased with the number of nodes and decreased with the square root of the domain 
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Figure 2. Effect of curvature weighting: (a) B =0.05; (b) B=0.005; (c) B=O.O005 
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length in order to achieve more accurate solutions. A summary of the findings pertaining to B1 
and B, is given in Figure 3. Here B ,  = B, = B and each point represents the results of a number of 
simulations for which B was varied, keeping all other parameters fixed. The optimal value of B for 
each group of simulations was selected as that value which produced the smallest error when 
compared to the fine FGFEM solution. The errors were estimated by integrating the deviations 
of the MGFEM solution from the fine FGFEM solution.* 

Numerical experiments were conducted for a variety of parameters that could influence the 
curvature upstream and downstream of the saturation front between two immiscible fluids. The 
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Figure 3. Optimal curvature weight as a function of domain length and number of nodes: (a) for the first soil and water 

characteristics of Table I; (b) the regression curves for both soils 
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parameters that were varied in the experiments included the speed of fluid front propagation, the 
number of nodes, the domain length and the fluid retention curve shape (saturation as a function 
of capillary pressure). Variations of the front propagation speed and the domain length were 
included because dimensional analysis of equation (1) shows that the characteristic change of S ,  
with time depends upon the Reynolds number (see Appendix). Note that variations of viscosity 
were considered implicitly by varying the retention curves. The two speeds of front propagation 
considered here are those of the simulation shown in Figure 1 and a 40% slower propagation 
rate. The front propagation rate was altered by changing the initial and boundary conditions. 
Domain lengths of 20,50 and 100 cm were used with different numbers of nodes. The experiments 
were conducted by varying B over five orders of magnitude in increments from one to one-half an 
order of magnitude. The values of B which gave the minimum error in the solution are given in 
Figure 3(a). This figure shows that the optimal values of B do not change with the velocity of the 
front. 

Next, retention curves were varied in the experiments because these curves have a significant 
influence on the front shape. The front tends to be less sharp and the curvature associated with 
this front becomes smaller as the retention curve slope becomes more moderate. Retention curves 
for two soils and the fluid characteristics from Table I were used in these experiments. These 
retention curves are shown in Figure4. The characteristics of the first soil were taken from 
Table I. The second soil is a more graded one (Figure 4). Its characteristic parameters are 4 = 0.3, 
K = 3 x 10- cm2, Sr,  = 0.3, Ss, = 0.9998, a,, = 0.05, n,, = 5.0, ak, = 0.05, nk, = 8.0, ak, = 1.0 and 
n,, = 15-0. 

Figure 3(b) shows the optimal B regression lines for each soil. One can observe that the 
curvature weights become smaller with an increase in soil grading (which smears the front) and 
that the weights depend upon the square root of the domain length divided by the number of 
nodes and the magnitude of the curvature. Figures 3(a) and 3(b) suggest an exponential function 

So first soil So_secondojl 
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--/---- 
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v1 \,A= 

-+---------- '----_- 
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I00 

Figure 4. Retention curves for TCE and water in soils 1 and 2 
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regression form for the curvature weight which depends upon L and n. For the first soil and the 
fluid characteristics in Table I this expression is given as 

n 

The function for the second soil is 

(4) 

where L is given in centimetres. Note that the negative exponential form is the same for both the 
poorer- and the better-graded soils, but each has different coefficients owing to the differing 
curvature. 

Experimentation showed that for fewer nodes there is a need to increase the weight of the 
gradient or alternatively to decrease the curvature weights ( B ,  and B,).  The reason for this 
requirement is that a higher proportion of the nodes must be clustered about the front to achieve 
an accurate solution as the total number of nodes is reduced. On the other hand, there is a need to 
increase the curvature weights with the number of nodes in order to distribute more nodes in the 
curvature zones, upstream and downstream of the front. Such a distribution serves to increase the 
smoothness of the solution in these regions of high curvature. The numerical experiments also 
showed that the solution is less sensitive to variations in the curvature weights with an increasing 
number of nodes or with increasing domain length, given a fixed ratio of node number to domain 
length. Representation of the pressure functions is clearly more accurate with an increased 
number of nodes. Given the same ratio of node number to domain length, nodal positions may be 
more easily adjusted to the moving front as the domain length increases. This is because, in a 
larger domain, much of the length would require only a few nodes to adequately represent the 
function involved. 

and B ,  as 20% larger than B,. 
In general B ,  should be somewhat larger than B,  if it is known a priori that the front is going to 
advance in only one direction. This observation results from examination of the solution which is 
obtained by the fine FGFEM. The fine grid solution shows that more nodes are needed to 
interpolate the functions in the curvature zone upstream of the front than the number of nodes 
clustered in this region by nodal redistribution utilizing B ,  = B, .  The curvatures of the pressures 
(and of the saturations) reach their maximum value at the front toe, a phenomenon which tends to 
cluster more nodes downstream of the front toe. For example, compare the result of the 
simulation for the case where B ,  = B ,  = 2.5 x lo-’ (Figure 5) with the simulation results shown in 
Figure 1. It is advised that B ,  be set equal to B ,  for cases in which the front movement direction is 
unknown a priori or is expected to change during the simulation. 

In addition to the parameter sensitivity highlighted above, the solution quality is also sensitive 
to the frequency of nodal redistribution. Recall that nodal adaptation is accomplished in a non- 
simultaneous manner by solution of (2). A number of adaptation schemes could be employed. Re- 
evaluation of nodal positions could be implemented every iteration within each time step, at the 
end of each time step or every few time steps, depending upon the results of some specific 
redistribution test. Nodal position re-evaluation in the example described above was imple- 
mented after any time step in which the largest gradient was located in an element whose length 
was greater than the smallest element length by some percentage, i.e. when the following 
condition was met: 

For the simulation shown in Figure 1, B,  was selected as 

Li(max{P;})>min{Li) x factor. (6) 
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Figure 5. Simulation solution with equal upstream and downstream curvature: simulation solution after t = lo00 s for the 
system shown in Figure 1 with B , = B 2 = 2 . 5  x 1W5 

Here Li (max { P i ) )  is the length of element i which contains the maximum gradient, min {Li} is 
the smallest element length in the domain and ‘factor’ is a positive constant greater than 1.0. 
Simulation results for this nodal redistribution frequency criterion (6) are shown in Figures 1, 2 
and 5 for factor = 1.2. 

The above redistribution test is suitable for this case since the solution is a single front moving 
relatively slowly in one direction. A more general test involves evaluation of the maximum 
deviation from zero of the left-hand side of equations (2). If this deviation is greater than some 
specified value, nodal locations are then recomputed. This general test facilitates iterative nodal 
redistribution as necessary (every time step or within a time step). Such a redistribution approach 
was found to be mandatory for cases involving multiple fronts or changing flow direction. 

2. EXAMPLE APPLICATIONS 

Vertical scenario-case 2 

A vertical single-front scenario was simulated in order to validate the MGFEM for a scenario 
in which gravity played a role. This case also served to support the utility of the parameter 
selection guidelines outlined above. Initial and boundary conditions for this simulation are given 
in Table 11. A 45 cm domain length with 15 nodes was selected for the fixed coarse grid and 
moving grid comparison. The results of this simulation were subsequently employed as initial 
conditions for a two-front simulation test (case 3). 

This simulation employed the more general test for nodal redistribution based upon the 
deviation of 2(d) from zero. It was incorporated in this simulation in order to examine its 
performance before employing it for a more complicated scenario. This test was found to 
consume more computation time than the test based on the smallest element length (6). This is 
due to the time required for assembly and evaluation of equations (2) after each time step. Grid 
adaptation was generally performed more frequently than in the previous simulation, where the 
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grid was adapted only when the front moved downstream to the next element. A value of about 
0.3% of the maximum value of the variables was selected as the maximum absolute deviation of 
2(d) from zero. This selection was based upon the desire to minimize both the CPU time and the 
error in the organic chemical saturation solution. An increase in the maximum allowable 
deviation increased the error in the phases’ saturation significantly. Decreasing the deviation 
factor, however, did not increase the solution accuracy significantly and the computation time 
increased enormously. 

Simulation results for this scenario are shown in Figures 6 and 7 for t= lo00 s and the 
performance comparison is given in Table 111. Figure 6 shows the solution of So and Figure 7 the 
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Figure 6. So simulation results for case 2 after loo0 s 
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solution of Pwg. The solution of Pow is visually the same as the solution of So and can be obtained 
from S,(1 - S o )  by e uation (lc). The selected moving grid curvature parameters were the same as 
in case 1 because (,,?L)/n has about the same value in both cases. Table 111 shows that the error in 
the MGFEM solution for So is only 41 YO of the error in the fixed grid solution. Figure 7 reveals 
that the differences in the solutions for Pwg for the two algorithms are negligible compared to the 
differences in the solutions for So (Figure 6). Similar observations were made in all other two- 
phase simulations. Thus further results of Pwg for two-phase flow problems will not be presented 
herein. Inspection of the table also reveals that the MGFEM CPU time is 82% more than the 
fixed grid time, but only 85% of the iterations used for the coarse fixed grid were required. The 
fixed grid algorithm needed 91 nodes (10816 bytes) and 8216 CPU seconds to obtain a solution of 
the same accuracy as that obtained by the MGFEM. Thus the MGFEM shows savings of 93.4% 
in computation time and 805% in storage. This numerical simulation example demonstrates the 
potential of the MGFEM to save a high percentage of computation time even with the more 
general and time-consuming grid redistribution test. 

Two-phase double front-case 3 

Subsequent to 1000s of vertical displacement of water by TCE, another simulation was 
conducted to model flushing of the TCE with water. This scenario involves the simulation of a 
two-phase, double-front problem. The fronts are the previously introduced TCE-water front and 
the new front where the TCE is being replaced by water. Boundary conditions are given in 
Table 11. Note that a residual value of TCE saturation was maintained at the upstream boundary. 
The new boundary pressure of the water source is just above the previous total boundary pressure 
and is set at this level in order to prevent backflow of TCE. The moving grid parameters used for 
this simulation are = E, = 0 and B ,  = B ,  = 2.5 x lo-’, as recommended by the analysis of these 
parameters given above. 

Results after 10 and 1000 s of simulated time are presented in Figure 8 and a performance 
comparison is given in Table IV. Figure 8 illustrates the good response of the moving grid 
algorithm to the change in upstream boundary conditions. Figure 8 and Table IV show that the 
error produced by the moving grid algorithm is much smaller than the error produced by the 
fixed grid algorithm for the same number of nodes. The smaller error in the MGFEM solution is 
the result of the motion of nodes toward the boundary after the change in boundary conditions. 
This redistribution of nodes decreases the amount of organic depletion from the domain after a 
change in boundary conditions, as illustrated in Figure 9. The fixed grid solution suffered severe 
undershooting in the solution at early times owing to lack of nodes in this portion of the domain. 
In this case the error of the moving grid was only 9% of the error associated with the fixed grid 
after 1000 s of simulation, as indicated in Table IV. The error in the moving grid solution did not 

Table 111. Comparison between moving and fixed grid FEM simulation case 2 

Comparison point Fine fixed grid Coarse fixed grid Moving grid 

No. of nodes 45 1 15 15 
Nodal spacing (mm) 1 32 Variable 
No. of iterations 10690 3289 2802 
CPU time (s) 23753 279 508 
Total memory space (bytes) 52576 2000 21 10 
Error 0.4115 01709 



60 A. GAMLIEL AND L. M. ABRIOLA 

0.8 

0.6 

,-$ 0.4 

0 . 2  

0 . 0  
0 10 20 30 40 50 

Legend 

x !!xed .g1i!Ldx=32mm. 
fixed grid dx=lmm r 0 moving grid 15 nodes 

0.8 

g 0.4 

O e 6 I  
0 . 2  

0.0 
0 10 20 30 40 0 

(b) z (4 
Figure 8. So simulation results for case 3 (a) 10 s and (b) lo00 s after creating a second front 

Table IV. Comparison between moving and fixed grid FEM simulation case 3 

Comparison point Fine fixed grid Coarse fixed grid Moving grid 

No. of nodes 45 1 15 15 
Nodal spacing (mm) 1 32 Variable 
No. of iterations 8414 3099 2530 
CPU time (s) 23218 300 443 
Total memory space (bytes) 52576 2000 21 10 
Error 06464 0.0540 
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Figure 9. Illustration of organic chemical depletion with grid coarsening 

increase much with time during this simulation. This is because the fronts were not as steep as in 
the single-front problem. Table IV also indicates that with 15 nodes the MGFEM needed only 
82% of the iterations used by the coarse FGFEM to simulate the problem. However, the moving 
grid approach required 48% more computation time owing to the redistribution test calculations. 
The moving grid simulation of this two-front problem included the momentary fixing of nodes at 
local maxima and minima as discussed in Part 1 of this paper. This was done to minimize mass 
balance errors during redistribution. 

Two-phase double front with a sink-case 4 

Next a simulation test case was conducted to model the operation of a sink within a domain 
where water displacement by TCE began at an earlier time. This scenario involves the simulation 
of a two-phase, double-front problem with a sink/source, where the sink is installed to stop the 
advancement of the front. The initial and boundary conditions for this test were obtained from 
the solution of case 1 after 1000 s as shown in Figure 1. The moving grid parameters used for this 
simulation were = c 2  = O  and B ,  =B,  =2.5 x lo-’. The selected sink strength for this case was 
0.03 cm s - l ,  which is twice the organic flux at the upstream boundary. This sink was installed at 
the fifth coarse grid node. The fourth moving grid node was moved artificially to this same 
location at the start of the simulation. Results for So after SO and 150 s of simulation time are 
presented in Figure 10. Here, as in the previous example, it was necessary to identify and 
momentarily fix nodes of local pressure minima and maxima. Such an operation also served to fix 
the location of the sink node. Examination of Figure 10 reveals that the moving grid solution is 
less subject to oscillations compared to the fixed grid solution, even with less nodes in the interval 
between the upstream boundary and the sink. In addition, the moving grid algorithm clusters the 
nodes about the steeper gradient zone, providing excellent agreement with the fine fixed grid 
solution. Simulations beyond 150 s showed that the flow reaches an almost steady state condition 
at this time, with near-residual TCE between the sink and the TCE-water front. 

A performance comparison between the MGFEM and the FGFEM is given in Table V. The 
comparison shows that the error is comparable for both methods after 150s. The errors are 



62 A. GAMLIEL A N D  L. M. ABRIOLA 

0 
[I) 

fixed grid dx=O.l crn 

0 moving grid 10 nodes 
0.6 fixed9!!. dxil:?!x!- 

0.4 

0.2 

0.0 

0.2- 

-._. -.. 
0.0 I I I 

0 5 10 15 
Y 

0 . 8  

0.6 

0.4 

0 . 2  

0.0 

Legend 
fixed grid dx=O.l crn 

X fixed grid dxa.11 crn 
0 moving grid 10 nodes 

_.._...-. ._...___.._.._.......-. 

0 

0 5 10 15 20 
x (ern) 

Figure 10. So simulation results for case 4 after (a) 50 s and (b) 150 s 

Table V. Comparison between moving and fixed grid FEM simulation case 4 

Comparison point Fine fixed grid Coarse fixed grid Moving grid 

No. of nodes 191 
Nodal spacing (mm) 1 
No. of iterations 1789 
CPU time (s) 2845 
Total memory space (bytes) 52576 
Error 

10 10 
21 Variable 

946 946 
76 83 

2000 21 10 
3.9 4.1 
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approximately the same even though the MGFEM uses only two-thirds of the nodes employed 
by the fixed grid solution within the problematic subdomain between the upstream boundary and 
the sink. With equal numbers of nodes in this interval the MGFEM gives a superior solution, as is 
illustrated in Figure 11 where a moving grid node was artificially moved upstream of the sink 
prior to the simulation. In this simulation the error of the MGFEM is only 2% of the error 
associated with the coarse FGFEM solution upstream to the sink point and 20% of the FGFEM 
error for the entire domain. 

0.8 

0.6 

2 0 . 4  

0.2 
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Figure 11. So simulation results for case 4 with an equal number of moving and fixed nodes upstream of the sink after 

(a) 50 s and (b) 150 s 
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Three-phase single front-case 5 

This three-phase flow test case involves simulation of horizontal, single-front, TCE displace- 
ment of gas in an unsaturated soil column. TCE invades from an upstream boundary source with 
a fixed head into a 48 cm soil column where all fluid phases are present initially. Initial and 
boundary conditions are given in Table 11. The downstream boundary and initial conditions 
correspond to 30% water, 10% TCE and 60% gas saturations, while the upstream boundary 
conditions correspond to 30% water, 58% TCE and 12% gas saturations. The selected 
moving grid parameters are ~,=(1/100max(P'})~ as specified in equation (3), E,=O and 
B ,  = B ,  = 5 x as specified in equation (4). Simulation results for this case are shown in 
Figure 12 for 100,500 and 1000 s and a performance comparison is given in Table VI. Note that 
Figure 12 shows the results for S,, So and S;. The solution of Pow can be recovered from equa- 
tion (lc) using S,  = S,,  and the solution of Po, + Pwg can also be recovered from equation (lc) 
using S,  = S ,  + So. 

An iterative algorithm and repulsive force were incorporated in the moving grid scheme to 
solve the three-phase flow problem. Iterations on grid redistribution were made within a time step 
to correct the representative gradient estimates relative to the new element lengths. These 
gradients changed significantly during each grid adaptation iteration about the front, especially 
at the beginning of the simulation, and iterations were needed in order to assure equidistribution 
of the gradient and curvature for the new nodal positions. Without these iterations, equidistribu- 
tion according to equations (2) was not achievable in a single grid adaptation operation. During 
the first grid adaptation, most of the nodes moved to a very small interval near the upstream 
boundary owing to the imposition of the boundary condition. Without interactive adaptation the 
nodes then moved back to an almost equal spacing distribution within the next few grid 
adaptations and returned to a very small interval by the upstream boundary in an oscillatory 
manner. Such grid oscillations will create severe numerical errors as the simulation proceeds. 

The repulsive force was required in these simulations to avoid a singular or ill-conditioned 
nodal redistribution matrix (equations (2)) due to the presence of zero gradient and curvature 
values. In the development of the governing equations (1) it was assumed that the gas phase 
would remain at a constant (atmospheric) pressure. Thus, when TCE displaces this fluid, no 
gradient is created in the gas phase pressure and all gradients downstream of the organic front 
remain zero. Figure 12 also shows that the front of organic advancement smears faster than in the 
organic-water front case (Figure 1) and thus equidistribution with respect to curvature is less 
important. 

The numerical results show good agreement between the MGFEM and the fine fixed grid 
solutions. This can be seen in Figure 12 and Table VI. Table VI shows that the error in the 
MGFEM solution is only 4.3% of the fixed grid FEM solution when both employ nine nodes. 
For this problem the MGFEM scheme used more iterations and more CPU time. However, the 
FGFEM requires 51 nodes, 6788 bytes and 1084 CPU seconds to obtain a result with the same 
accuracy as the MGFEM result with nine nodes. This translates to a fixed grid requirement of 
274% more memory bytes and 323% more CPU time than used by the moving grid. These figures 
demonstrate significant savings of computer resources by the MGFEM simulator for a one- 
dimensional three-phase flow with a single front. 

Three-phase double front-case 6 

A final simulation test case examined the flushing of TCE with water after a previous gas 
displacement by TCE. The simulation was conducted for a horizontal case where the initial 
conditions were the results of the three-phase, single-front simulation (case 5). This scenario 
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Table VI. Comparison between moving and fixed grid FEM simulation case 5 

Comparison point Fine fixed grid Coarse fixed grid Moving grid 

No. of nodes 48 1 9 9 
Nodal spacing (mm) 1 32 Variable 
No. of iterations 2388 2082 3082 
CPU time (s) 15057 169 258 
Total memory space (bytes) 61828 1412 1816 
Error 1.3092 0.0563 
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Table VII. Comparison between moving and fixed grid FEM simulation case 6 

Comparison point Fine fixed grid Coarse fixed grid Moving grid 

No. of nodes 48 1 9 
Nodal spacing (mm) 1 32 
No. of iterations 8642 2756 
CPU time (s) 51834 292 
Total memory space {bytes) 61828 1412 
Error 0.9268 
Error 09268 

9 
Variable 

2629 
250 

1816 
02561 
0.2561 

involves the simulation of a three-phase, double-front problem. The fronts are the previously 
introduced gas-TCE-water front and the new front where the TCE is being replaced by water. 
Boundary conditions are summarized in Table 11. The upstream boundary is fully saturated with 
water and the new boundary pressure of the water is set just above the previous total boundary 
pressure so as to prevent backflow of TCE or gas. The moving grid parameters used for this 
simulation are the same as in the previous single-front, three-phase problem. 

Results after simulation times of 10 and l 0 o 0 s  are shown in Figure 13 and a performance 
comparison is given in Table VII. Figure 13 shows the good response of the moving grid 
algorithm to the change in the upstream boundary conditions. The figure and the table 
demonstrate that the error produced by the moving grid algorithm is again much smaller than the 
error produced by the fixed grid algorithm for the same number of nodes. The behaviour here was 
very similar to the two-front, two-phase scenario (case 3) described previously. Severe mass 
balance errors resulted in the coarse fixed grid solution owing to the lack of nodes near the 
upstream boundary. After 10o0 s of simulation the error of the moving grid solution was only 
27% in So and 11% in S ,  of the associated error with the fixed grid. The error in the moving grid 
solution did not increase much during this simulation, similar to experience with the two-phase, 
double-front simulation. 

3. CONCLUSIONS 

In Part 2 of this paper, example simulations have been presented to compare the performance of 
the MGFEM with a standard fixed grid scheme. Test cases examined include single- and 
multiple-front problems involving two- and three-phase flow regimes. The examples demonstrate 
the capability of the MGFEM to simulate a variety of one-dimensional multiphase flow scenarios 
in porous media and its potential to save computer resources. More accurate results were 
consistently obtained with the MFGEM than with the FGFEM in all simulations examined for 
the same number of degrees of freedom. In addition, the MGFEM achieved significant savings in 
computer resources when compared with alternative FGFEM solutions of the same accuracy. 

The simulations justify the selection of the maximum gradient, from among all the primary 
variable gradients, as the representative gradient for the moving grid adaptation, as was 
suggested in Part 1 of this paper. Momentary fixing of nodes associated with extremum pressures 
was shown to overcome mass balance problems in multiple-front simulations. This approach also 
served to fix a sink node during the redistribution process. 

A sensitivity analysis was conducted to develop guidelines for the selection of MGFEM 
parameters for simulations involving multiphase flow in porous media. On the basis of this 
analysis the following conclusions were drawn. 
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1. The artificial repulsive force c1 should be zero for simulating multiphase flow in the absence 
of a gas phase. When a gas phase is present, this parameter should be related to the ratio 
between the gas and water viscosities multiplied by the maximum water gradient in the 
domain (see equation (3)). This choice of E ,  compensates for the neglect of the gaseous 
pressure gradient in the governing equations. It assures that the set of nodal redistribution 
equations (2) will not become ill-conditioned as the result of a zero gradient. 

2. The artificial viscosity E ,  should be set to zero for all simulations. 
3. The curvature weights B ,  and B, should be reduced when the number of nodes in the 

domain increases. Optimal weights were shown to exhibit an exponential dependence on 
(,/L)/n (see equations (4) and (5)). Soil grading was also shown to be a factor in the selection 
of these parameters. 

Future investigations will be required to increase the flexibility of the MGFEM approach. 
Further work will be needed to develop a functional form for the curvature weights, which would 
depend upon gradient and curvature magnitudes and distributions in the simulation domain. 
This development is necessary to eliminate the need for a priori determination of these weights 
and would facilitate the self-adaptive evolution of the algorithm to changes in the magnitude and 
distribution of curvature and gradient. Another possible extension of the work contained herein 
would be to explore the application of the MGFEM approach to other types of coupled non- 
linear PDE problems. It is anticipated that moving grid parameter selection guidelines would 
have to be developed on an application-specific basis. 

Extension of the moving grid model to two spatial dimensions would require expansion of the 
equidistribution equation to higher dimensions. This would involve determination of suitable 
first- and second-degree error estimators in multidimensions, formulation of element error 
equidistribution criteria (see e.g. equations (17) and (19) in Part l), development of discrete 
analogues to the equidistribution criteria (see e.g. equation (21) in Part 1) and integration of these 
criteria and combination into one criterion (see e.g. equation (24) in Part 1). This will result in a set 
of algebraic equations to distribute the nodes according to any of the variables in the problem. 
Determination of a representative variable to form a single set of equations would then be 
required. Two-dimensional 'expanding grid' adaptation models have previously been developed 
for a limited number of problems governed by a single PDE (e.g. References 9-1 1). Such models, 
however, did not have to overcome grid adaptation with respect to different variables or mass 
conservation errors with grid adaptation, which are major problems in the solution of the non- 
linear coupled set of PDEs governing multiphase flow in porous media. In addition, these models 
were utilized to solve problems involving straight line boundaries where two-dimensional 
elements may stretch almost uniformly across the domain in the solution of a single-front 
problem. Our model could easily be extended to this kind of two-dimensional problem. Unfortu- 
nately, grid deformation may be considerable in general two-dimensional multiphase flow 
problems and boundary nodes must be fixed to describe the location of irregular boundaries and 
spatial variations in the boundary conditions. Thus model extension to generalized problems in 
two dimensions would most likely require incorporation of a routine to recalculate local element 
nodal connectivities. 
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APPENDIX. DIMENSIONAL ANALYSIS OF EQUATION (1) OF PART 1 

Neglecting the compressibility and gravity terms, equation ( 1 )  of Part 1 can be written as 

Now the following scaling and dimensionless variables may be defined: L, domain length; 
l = L / n - l ;  I ,  front velocity; pa=p*paIJII; t= t*Ap12/pw;  x=x*l ;  K=K*12. Here Ap is the density 
difference between the wetting and non-wetting fluids. Substituting the dimensionless variables in 
(7) yields 

Reorganization of (8) yields 

or 

where i%?& = IApl /pw can be considered as a Reynolds number. 
Here similarity requires that the Reynolds number of the scaled variables multiplied by the 

viscosity ratio divided by the porosity be the same. Note that the front velocity depends upon the 
initial and boundary conditions, the intrinsic permeability and the relative permeability and 
saturation functions of the capillary pressure. 
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